3x^2+7x=5(x+1)

Simple and best practice solution for 3x^2+7x=5(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+7x=5(x+1) equation:



3x^2+7x=5(x+1)
We move all terms to the left:
3x^2+7x-(5(x+1))=0
We calculate terms in parentheses: -(5(x+1)), so:
5(x+1)
We multiply parentheses
5x+5
Back to the equation:
-(5x+5)
We get rid of parentheses
3x^2+7x-5x-5=0
We add all the numbers together, and all the variables
3x^2+2x-5=0
a = 3; b = 2; c = -5;
Δ = b2-4ac
Δ = 22-4·3·(-5)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-8}{2*3}=\frac{-10}{6} =-1+2/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+8}{2*3}=\frac{6}{6} =1 $

See similar equations:

| x+1.7x=4.08 | | 4^x+2.4^x=48 | | 4x+2.4x=48 | | 2(4x+5)=7x-5 | | 3r+4.5(r-3)=61.5 | | 7x+1=2+21 | | 6x6-7x-33=0 | | 10x-1+13x-3+9x+7=360 | | 10x-1+13x-3+9x+7=90 | | 10x-1+13x-3+9x+7=180 | | 15x+24+18x=90 | | 15x+24+18x=180 | | 5x+18+2x-6=90 | | 0.6x^2+0.52x+3200=0 | | y=223(1+0.43) | | x-13-(-12)=10 | | 1.9=-0.3+6d | | 4k+2=6k+14 | | -5=2+10d | | 12x=10x-18 | | 19=5+7d | | 18x-6.5=12x+13 | | 18x-6.5=8x+6.5 | | 4x+6.5=8x+6.5 | | 3x+23)+(7x-4)+(9x-6)+95+90=540 | | 1/2(7(14/5)-6)=6x-10 | | 2x+27=54 | | 6(x-8)=43-x | | Y=27-x | | x+24/19=x+2/17 | | 125x=20 | | X^3+13x+36=0 |

Equations solver categories